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Physikaiisches Institut, Univenitiit Bonn, NuOallee I?, 531 15 Bonn, Federal Republic of 
Germany 

Received 21 April 1993. in final form 9 September 1993 

Abstract. Using penurbative methods we derive new results for the spectrum and correlation 
functions of the genenl &-chiral PoN quantum chain in the massive low-temperature phase. 
Explicit calculations of the ground.stale energy and the first excitations in the zem momentum 
sector give excellent approximations and confirm the genetal statement that the spectrum in 
the low-tempenlure phase of pnenl Z,-spin quantum chains is identical to one i n  the high- 
temperature phase where the r6le of chage and b o u n d q  conditions are inlerchanged. Using a 
penurbative expansion of the ground state for the E3 model we are able to gain some insight 
into correlation functions. We argue that they might be oscillating and give estimates for the 
oscillation length as well as the correlation length. 

1. Introduction 

The self-dual Z3-chiral Potts model was introduced by Howes et al [ I ]  and studied using 
e.g. fermionization and approximative methods. in particular perturbation expansions. One 
remarkable result of the perturbation expansions was that for special values of the parameters 
the first translationally invariant excitation is linear in the inverse temperature A for special 
values of the parameters. von Gehlen and Rittenberg then realized [Z] that this model is 
integrable for these special values of the parameters because it satisfies the Dolan-Grady 
integrability condition [3] which is equivalent [4,5] to Onsager’s algebra [6]. They also 
generalized this ‘superintegrable’ chiral Potts model to general &-spin n [2]. Afterwards, 
it attracted much attention because it could be related to a classical model that satisfies 
a generalized Yang-Baxter equation with Boltzmann weights defined on higher genus 
Riemannian surfaces [7-121. However, even then perturbative methods lead to important 
new results [ 13,141. One example is a conjecture for the exact form of the order parameters 
in general superintegrable Z,-chiral Potts chains [ 141. 

Recently, a particle interpretation of the momentum zero sectors in the high-temperature 
phase of all Z*,-chiral Potts models at general values of the parameters has been 
proposed [ 151 and a quasi-particle spectrum has been derived for the superintegrable 253- 
chiral Potts model [16]. Furthermore, a scaling exponent for the wavevector in the low- 
temperature phase of the %,-chiral Potts model has been calculated in [17, IS] from level 
crossings in the ground state. This motivated us to perform the perturbative calculations 
reported in this paper. On the one hand the excitation spectrum in the low-temperature 
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Vietnam. 
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phase of general Z,-chiral Potts quantum chains is not completely understood. On the other 
hand very little is known about correlation functions. Perturbation expansions enable us to 
gain more insight into the spectrum of the low-temperature phasct and shed some light on 
correlation functions. 

N S Han and A Honecker 

A general &-spin quantum chain with N sites is defined by the Hamiltonian 

N n-I 

H!) = - i&uj  i akr;r;;; , (1.1) 
,’=I k=I 

For n = 2 (1.1) is just the well known king model. In this case the operators uj and r, 
are the Pauli spin matrices ur and uz acting in a vector space C2 located at site j .  For 
general n one may think of the operators uj and r, as generalizations of the Pauli spin 
matrices-ee (2.3) below. In this paper we identify the ( N  + 1)th site with the 1st site, 
i.e. we use toroidal boundary conditions. 

The Hamiltonians (1.1) contain 2n - 1 parameters. The temperature-like parameter i 
will be chosen real while the coupling constants &yk and Lyk will be generally complex. H$’ 
is Hermitian iff iuk = < - k  and Uk = 

In this paper we will parametrize the constants 2 k ,  lyk in (1.1) by two angles $, ‘p, fixing 
their dependence on k :  

- ei$o(2k/n-I) 
(1.2) 

Equation (1.2) is called the general ‘chiral Potts model’. This parametrization is convenient 
because it  can easily be specialized to various models. Setting r$ = ‘p = 0 yields models 
with a second-order phase transition at h = 1 that can be described by a parafermionic 
conformal field theory in the limit N + 03 [191. These so-called Fateev-Zamolodchikov 
models lead to extended conformal algebras Wan-, where the simple fields have conformal 
dimension 2, .  . . , n (20,211. The spectrum of the Hamiltonian (1.1) with $ = cp = 0 can be 
described by the first unitary minimal model of the algebra Wd,-I. For n = 3 it coincides 
with the three-states Potts model and the symmetry algebra is Zamolodchikov’s well known 
spin-3 extended conformal algebra [22] at c = $. 

For r$ = (p = r f 2 .  ( I  .2) specializes to the ‘superintegrable’ Z,-chiral Potts model which 
exhibits remarkable integrability properties [2]: At r$ = ‘p = n/2 the Hamiltonians (1.1) 
satisfy the Dolan-Grady integrability condition [3]. 

Albertini ef al [7-91 have shown that the Hamiltonian (1.1) can be obtained for more 
general values of the angles 4, ‘p as the T-continuum limit of an integrable classical statistical 
model if one imposes the constraint 

i cos (p=cos r$ .  (1.3) 

H;) with the choices (l.2), (1.3) is in general no longer self-dual. However, if we choose 
6 = ‘p in (1.2) HE;’ is self-dual. Sometimes (1.3) is implied when referring to the chiral 
Potts model but we prefer to call (1.1) with (1.2) the general chiral Potts model. 

[8,23,18]: two massive 
and two massless phases. One of the massive phases is ordered and the other massive 
phase is disordered. The low-temperature phase (small 1) that we are going to study 

t Note that we do not intend to study the massless regimes around i. = I for which perturbalion expansions &re 
certainly no1 well suited. 

ei6C’2k/n-l) 

sin(nk/n) s i n ( n k / n )  ’ 
Lyk = ffk = 

The %3 version of (1.1) is known to have four phases 
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in this paper is the ordered massive phase. At r$ = rp = n/2 it appears in the range 
0 < 

In the next section we will review some well known facts about the Hamiltonian 
(1.1). Then, in section 3 we will evaluate the ground-state energy and the first excitations 
perturbatively for n = 3 and zero momentum, but arbitrary 6, rp. The results remind us of 
a general duality statement that we discuss in section 4. Finally, section 5 is devoted to a 
study of correlation functions of the &-chain. 

< 0.901 292. .  . [8.23]. 

2. Preliminaries 

In this section we summarize well known facts about &-quantum spin chains and introduce 
notations that will be useful later on. For a more detailed, recent review see e.g. [24]. 

First, we give a precise definition of the operators r, and U,. U, and r, freely generate 
a finite-dimensional associative algebra by the following relations ( I  < j ,  I < N ) :  

U,U, = U,U, u.r I ! -  - r I J  0.w~j.1 r,ri = rir, U! I 1  = rn = 1 (2.1) 

where w is the nth root of unity w = eZriln. In this paper we will only consider boundary 
condifions of type rN+I = o-Rrl, R E Zn for theHamiltonian (1.1). We will mainly focus 
on periodic boundary conditions r N + I  = rl. 

The algebra(2.1) can be conveniently represented in BN@". In this space we can choose 
the following basis if we label the standard basis of C" by {eo, . . . , e,-] 1: 

l i l . .  . i ~ )  : = e i ,  @ ... B e i N  0 < ij < n - 1. (2.2) 

Usually one considers a special representation r of the algebra (2.1)-a definition can 
be found in appendix A. However, for low-temperature expansions of (1.1) it is more 
convenient to consider a different representation F :  

?(rj)lil . .. i, , . . i ~ )  = w' l l i l . .  . ij.. .iN) 

i(uj)li~. . .i, .. . i ~ )  = l i ~ .  . . (ij - 1 mod n ) .  . . i ~ ) .  
(2.3) 

Hf) commutes with the Zn charge operator 6 = ny=, uj, and thus has n charge sectors. 
The eigenvalues of Q have the form w e  with Q E {O, . . . , n - I]. We will refer to the 
number Q as the 'charge'. 

Hf) also commutes with the translation operator T N .  The eigenvalues of ZV are Nth 
roots of unity. We label them by eip and call P the 'momentum'. For a chain of length N 
one has P E {0, 27r/N, . . . , 2 a ( N  - ] ) / N I .  The eigenstates llil . . . i ~ ) )  with momentum 
P can be obtained from lil , , , i N )  by finite Fourier transformation. TN acts for R = 0 on 
the states (2.2) as 

?(TN)liliZ., . in) = l iz. .  . i N i l ) .  (2.4) 

In the case R = 0 the eigenstates with momentum P are given by 

N is a suitable normalization constant. If the state lil , . . i ~ )  has no symmetry,,one has 
N = N .  This will apply to all cases below where we need (2.5). For a definition of the 
momentum eigenstates (2.5) in case of boundary conditions R # 0 see e.g. [25,24]. 
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3. Spectrum in the low-temperature phase 

In this section we calculate the ground-state energy and the lowest excitations in the low- 
temperature phase using perturbative expansions according to [26] around 1 = 0 of the 
Hamiltonian (1.1). We restrict ourselves to periodic boundary conditions R = 0. 

In [ I ]  high-temperature perturbation series were presented for the disorder operator 
(or magnetization m) and the first energy gap in the momentum-zero sector of the 
superintegrable Z,-chiral Potts model leading to exact conjectures for both of them. After 
the superintegrable chiral Potts model had been generalized to general n [2], perturbation 
series for the ground-state energy, energy gap in the momentum zero sector, magnetization 
and susceptibility of this superintegrable Z;.-chiral Potts model were presented in [13]. At 
the same time elaborate expansions of the ground-state energy and some excitations of the 
superintegrable chiral Potts model for n E (3,3.5) and in particular perturbation series for 
the order parameters with general n were calculated in [14]. First perturbative results for 
the energy gaps at more general values of the angles 4, (p were obtained in [ 151 where 
second-order~ high-temperature expansions for the translationally invariant energy gaps in 
each charge sector of the general self-dual &- and Z,-chiral Potts models as well as a 
first-order expansion for the dispersion relations for general n were presented. 

In this section we restrict once again to the &-version of the chiral Potts model (1.1) 
but impose no restrictions on the angles @, (p, We present low-temperature expansions for 
the ground state energy and in particular the first translationally invariant energy gaps that 
up to now have not been treated by perturbative methods because of high degeneracies. 

The normalization of the Hamiltonian (1.1) is chosen such that expansions around zero 
temperature i = 0 are possible. If one wants to calculate expansions around infinite 
temperature one usually normalizes thelHamiltonian i?,!,? = ( l / i ) H : ) ,  sets A = i-' and 
performs expansions around A = 0. 

In each charge sector Q of the low-temperature phase there is one unique ground state. 
For arbitrary n it is given by 

N S Han and A Honecker 

provided that -n/2 < @ < n/Z. For n = 3 (3.1) is the ground state if -n < @ 4 n and 
for n = 4 (3.1) is the ground state for -5n/6 < 4 < 5a/6. The excited states are more 
complicated and highly degenerate. The space of the first excitation is spanned by those 
states which have precisely two blocks of different spins. Furthermore, the values of the 
spins i n  these two blocks must have difference one. For fixed P ,  Q and -n/2 < @ < a/2 
we can choose the following basis for the space of the first excitation: 

" - 1  
Iaf) := - - ~ w ' ' ~ I I  ( I +  1 mod n ) ,  , . ( I +  1 mod n ) l ,  , . I ) ) ,  . (3.2) 

k times .J;; 1=0 

In order to perform explicit calculations we now specialize to n = 3 with P = 0. The 
constant contribution in 1 to the grouna state energy EIGS,QI and the first gap AEp.1 can 
be calculated easily: 

(3.3) 
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As far as the ground state is concerned, we notice from the explicit form of the potential 
in (1.1) that the first order in the perturbation expansion vanishes. The next order that has 
to be calculated is the second-order E$)s;Q,. One applies the potential V = xj.kEku,? to 
the ground state: 

Using AE;?, = E"' - E g S i Q ,  one obtains the result 1.3 

2 N  
3 d c o s ( @ / 3 )  ' 

- -  - (3.5) 

Set C := COS (4/3), R := 1 - 4C2. Then, calculating higher orders in the same manner, 
one arrives at 

2 - cosy, -3 J5 1 A _ _  - f -  A4 4 
Ne0 := E I G S : Q ) ( N )  = - N  -C + - A'+- (& 34% 9&* 81C [ZC2 

for sufficiently large N .  For y, = 4 = n/2 (3.6) reproduces the result of [13]. In (3.6) 
we restricted ourselves to a fifth-order expansion although we have calculated higher orders 
because the explicit dependence on 4 and (0 makes the next orders complicated but not 
very illuminating. The orders e:) of the free energy per site eo are independent of N if 
N =- k .  This is a general feature of the ground-state energy for spin quantum chains with 
nearest-neighbour interaction. 

Note that the expansion in powers of i, (3.6) of eo does not depend on the charge sector 
for large N .  From the explicit calculations we see that this is a general result: the order 
zke ik)  of the free energy does not depend on the charge if N k .  However, ground- 
state level crossings have been observed in [17,18]. Indeed, for short chain length N high 
orders ik ( k  2 N )  do depend on the charge Q .  Thus, at fixed i, in the massive phase 
level crossings in the ground-state do occur although the Q-dependent term of the ground 
state energy eo decreases fast in magnitude with increasing N .  The presence of such level 
crossings is a hint for oscillating correlation functions and, in fact, the critical exponent 
of the wavevector can be calculated from them [27 ,17 ,  IS]. For the superintegrable case 
4 = ip = 7r/2 we explicitly determined level crossings in the ground state using 9th (resp. 
10th) order expansions for 3 6 N < 7 sites. Our results for the temperatures i, where the 
gap vanishes are in good agreement with the values presented in [18] (table 3) and show 
in particular that there are no crossings besides the ones presented in [18]. However, we 
have argued that for larger N we would need even higher orders for the study of level 
crossings which goes beyond current computer power. Thus, numerical methods provide a 
much better tool for the study of level crossings [17,18]. 
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Finally. we should mention that the approximation (3.6) is already excellent for the 
whole massive low-temperature phase up to its boundary near i = 1 for moderately long 
chains. For examplc at the phase transition ,i = 1 of the parity conserving Potts case 
@ = rp = 0 one observes only a deviation of 0.8% between (3.6) and the exact result for 
N = 12 sites. In the superintegrable c a s  @ = rp = n / 2  at 1 = 0.9 (close to the boundary 
of the phase) the deviation of (3.6) at N = 12 from the exact result is also as small as 
1.3%. Thus, the perturbation expansion (3.6) yields a surprisingly good approximation 
in the complete massive low-temperature phase. Even at the boundary of the phase the 
deviation is smaller than 2% for N > 10. 

In principle, one can derive a critical exponent LY for the specific heat dzeo/dL2 from a 
perturbation expansion of the ground-shte energy eo. However, (3.6) leads only to a third 
order expansion for the specific heat and on the superintegrable line even the third order 
vanishes. Although the approximation of (3.6) to the ground-state energy eo itself is so 
good, one certainly needs higher orders for accurate estimates of the critical exponent of 
the specific heat. Consequently, a has been estimated using a 13th-order expansion of eo 
in [ I ]  for the self-dual case @ = rp =O'and for the superintegrable case @ = rp = r / 2  the 
king-like form of the eigenvalues has been exploited to calculate even higher orders of eo 
in [14]. The results in [ I ,  141 indicate a = independent of the angles @, rp. 

The calculation of the smallest gap AEQ.I is more difficult. Let q be the projector onto 
the space spanned by the states I@) (3:2). In this space, the potential acts as follows: 

( 2 e - i 9 & )  + e - i q / 3 U 2 Q ~ a f ) ) ,  
2 Q qT(v)luN-l) = -- & 

In the limit N -+ 00 the lowest perturbative eigenvector converges to 

(3.7) 

Using (3.7) and (3.8) we can calculate that for N -+ 00 and @ < n / 2  

- - "  g 
Iim A E ~ . ~  = ~JSC - A- 

N+CO & ($) 

Comparing (3.9) with the corresponding high-temperature expansion [ 15,281 shows that up 
to the order calculated it coincides with AEl,o(h) + AEz,o(A) at the dual point h = i with 
@,9 interchanged. In fact, we can also estimate the error we have made in calculating (3.9). 
The error we are making when replacing the true eigenvector by (3.8) is of magnitude N-'. 
This behaviour is preserved when the potential V and the resolvent g are applied. Thus, we 
obtain in all orders starting with the first one a deviation which is of magnitude N - ? .  This 
further supports the identification of (3.9) with the dual of a two-particle state. Of course, 
(3.9) holds only for @ c n/2. 
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For @ 2 n/2, the states (3.2) are not the first excited states any more. Now we have to 
consider the following states: 

1 
-(Ill . .  . 1 2 . .  . 2 . .  .o.. . o ) ) p  + o Q l l 2 . . . 2 . .  . l , .  .1)) p f i  

+ . . . + o Q ( n - q o . .  . o . .  . (n  - I ) .  . . (n  - I ) ) )  p )  

Going through the same steps as before we find 

lim AEp.1 = 
N+CC 

(3.10) 

(3.1 1) 

Equation (3.11) coincides with 3AEl.&) at the dual point A = with interchanged @, q 
in the corresponding high-temperature expansion [15,28] up to the order calculated. 

For @ = n/2 the states (3.2) and (3.10) are degenerate. However, for large N the 
dominant contribution comes from the states (3.10) such that (3.11) is valid for @ = n/Z 
as well. At @ = 9 = n/2 this is in agreement with the exact result of [I I]: 

n 
@ = p P = -  

2 lim A E Q , ~  = 6(1 - x) for 
N-CS 

(3.12) 

4. Duality of spectra 

The results in the previous section remind us of some well known results about duality: the 
spectra in the lowtemperature phase at are dual to those in the high-temperature phase 
at h = if we interchange ak and &. This statement for Z,, quantum spin chains has 
been known for a long time [29,30] and was also used in [ 11. However, special attention 
has to be paid to the boundary conditions when performing duality transformations. It has 
been observed in [2] that the duality transformation interchanges the r81e of the charge 
Q and boundary conditions R .  In this section we reformulate the precise statement of 
duality for the general &,-chiral Potts quantum chain (1.1) and discuss its consequences. 
For completeness, a simple non-standard proof is presented in appendix A. 

We denote the Hamiltonian (1.1)  including the parameters by H,$"(h, RIt,C;, a;). If 
the Hamilton operator is pro rly normalized for high-temperature expansions (&(A) := 

parameters. In order to be able to distinguish the parameters we have introduced an upper 
index. Furthermore, we abbreviate the space with charge Qh' in the high-temperature phase 
by WQh' and the eigenspace of i(Q) to eigenvalue me" by f ie" .  Now we can formulate 
the statement: fit)@, Rht, 62, a:) restricted to 'Heh' and H t ) ( i ,  R", E:, a:) restricted to 
fiQ" have the same spectra if 

Q" = Rhl RI' = Qh' c; = a: a;=E$ I=).. (4.1) 

The momentum decomposition can be applied alike in the high- and low-temperature 
phase. Thus, the statement of duality is also valid if we further restrict to eigenspaces 
with momentum P .  

A H ( h - ' ) )  it will be called H,")(h, -p" Ith1.*:, a:), writing again explicitly the corresponding 
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Note that the duality (4.1) preserves the cbndition (1.3). Thus, each integrable chiral 
Potts model is dual to exactly one integrable chiral Potts model. The integrable model 
is self-dual iff h = 1 and $5 = y E (x/2)Z. ?he point h = 1, $5 = y = 0 exhibits 
conformal invariance [19]. However, this is not true for the other self-dual points. For 
example the point A = 1, @ = y = n/2 is not conformally invariant although in its vicinity 
non-diagonal conformal field theories have been used to derive correlation functions [31]. 
Recently, perturbed conformal field theories have been used to calculate critical exponents 
and show the existence of infinitely many conserved charges for the self-dual Z,-chiral Potts 
model at small chiral angles [32]. 

From (4.1) we conclude that the quasi-particle interpretation for the high-temperature 
phase of the general Z,-chiral Potts quantum chain [28] can be pulled over to the low- 
temperature phase. The duality transformation interchanges charge sector Q and boundary 
conditions R. Thus, the ground state of the high-temperature phase is mapped to periodic 
boundary conditions R = 0 in the low-temperature phase. However, the fundamental 
excitations are mapped to different boundary conditions corresponding to the charge sectors 
R E (1, . . .n - I ) .  Therefore we observed only composite particle states in section 3. 

It is well known that in the high-temperature phase the limit N -+ w of the energy 
eigenvalues is independent of the boundary conditions whereas the charge is substantial. 
The duality (4.1) implies that in the low-temperature phase this limit does not depend on 
the charge, but the spectra are clearly different for different boundary conditions. The 
independence from the charge has already been observed in section 3 for some eigenvalues. 
One can also argue directly that this degeneracy holds for the complete spectra, at least in  
the range where the perturbation expansion converges. 

In the perturbation expansion all orders can be organized with respect to the energy 
eigenvalues at zero temperature. All energy eigenspaces-apart from the ground state- 
have a dimension that grows at least with N .  We have seen in section 3 for some examples 
that at a fixed order k of the perturbation expansion only a finite number  NE,^ of matrix 
elements of the potential V k  in the eigenspace to energy E depend on the charge Q. This 
holds generally as we can see from the proof of duality presented in appendix A (in particular 
(A.2) and (A.3)). Thus, the term for energy E at order k in the perturbation expansion has 
a Q-dependent term that is at most of order (NE,JN)’  as N --f w. This implies that the 
differences between the charge sectors converge to zero in the large-chain limit. 

It remains to check that this is also true for the ground state. The contribution of the 
ground state to a perturbation expansion for any energy level other than for the ground- 
state energy itself is neglegible. The kth order of the ground-state energy per site e r )  is 
independent of the charge Sector Q if k < N .  This is easy to see because in the perturbation 
expansion application of k powers of the potential V to the ground state is projected back 
onto the ground state. Thus, all excitations that are created must be annihilated again, or 
an excited state is proportional to the ground state. The second case is only possible i f  an 
excitation is carried around the boundary of the chain implying k > N .  On the other hand. 
the first possibility yields results that are clearly independent of the charge sector. Finally, 
convergence of the perturbation series for eo implies that the limit N 4 w is independent 
of the charge sector Q. 

In  summary, in the low-temperature regime all charge sectors are degenerate for 
N + w, at least if the perturbation expansion converges. 

5. Correlation functions in the low-temperature regime 

In this section we will apply methods explained in more detail in [28] to the correlation 
functions i n  the low-temperature phase of the chiral Z? Potts quantum chain. Note that the 
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duality argument of section 4 applies only to the Hamiltonian and not to other operators. 
Thus, quantities like e.g. correlation lengths may be different in these two phases. In fact, 
current knowledge about the correlation functions is restricted to the conjectures presented 
in [23] and the arguments in favour of a non-vanishing wavevector presented in [17,18]. 

We study the correlation functions 

using a perturbative expansion 1261 for the ground state I U) from the state [GS: Q) (3.1). 
The expansion of the ground state in powers of leads to an expansion of the correlation 
functions in powers of i: 

m m 
C&) = Cikc;'(x) C,(x) = CCc:qx) . (5.2) 

In the definition (5.1) it is legitimate to omit the one-point functions for the operator r 
because they are zero due to charge conservation. 

Note that for a kth-order expansion in (5.2) one needs a kth-order expansion for the 
ground state which as a by-product gives a (k + I)th order expansion of the ground-state 
energy eo. The method will be spelled out in more detail elsewhere 1281. 

Below, we will first give the final results for general angles $, 'p. It turns out that the 
result is too complicated to infer the general form of the correlation functions (5.1). Thus, 
we then specialize to the superintegrable case = cp = n/2 and calculate even higher 
orders. By looking for a good fit we try to guess the structure of the correlation functions. 
With this experience we turn back to the general case and discuss how the correlation 
functions should change for general 6 ,  p 

In order to save space we present only the final results for the correlation functions. For 
Cr(x) one obtains, using again the abbreviations C = cos($/3), R = 1 - 4Cz, 

k=O k=O 

(0) (1) c, (x) = 1 c, (x) = 0 

1 + 2 P  - 3 i sin(2@/3) 
3RZ 

The first orders of the correlation function C,(x) read as follows: 

p ( x )  = s,,o CO (0 ( x )  = 0 

(5.3) 

(5.4) 
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Note that the correlation functions (5.3) and (5.4) do not depend on the charge sector. 
(5.3) suggests that the correlation function Cr(x) tends to a non-zero constant for large 

distances x-in contrast to the correlation functions in the high-temperature phase [28] so 
that the low-temperature phase is ordered over long ranges. However, beyond this general 
conclusion, it is difficult to guess from (5.3) or (5.4) what might be the behaviour even for 
small x .  Thus, we set @ = ’p = r j 2 ,  calculate four further orders and obtain 

N S Han and A Honecker 

@ ’ ( x )  = 1 C?’(x) = @ ( x )  = c, ( 5 )  ( x )  = c, 0)  ( x )  = 0 c, (2) ( x )  = $(S,.O - 1) 

and 

cp (x )  = &,o C!‘)(X) = Ci3)(X) = Cycx) = CL’)(x) = 0 

1 1 
27 729 

1 (5.6) 
19683 

1 
531 441 

C:’)(x) = -{-46~,0 + & , I )  

Cp(x) = - (-5866,,0 t 1476~,1 t 1268,~ t 806z.3) 

cp(x) = - {-9927SX,o + 21306x.1 + 1721Sx,z t KSr,3 t 9106,,4). 

c?’(X) = -(-416z,o + 146x.1 + 8 6 x ~ )  

Unfortunately, determination of the constant K in CL*) exceeded the numerical range of our 
special-purpose computer algebra system. 

Up to the order calculated, C,@) is real for all values of the parameters @, ‘p. ,i. 
Cr(x), in contrast, has a non-vanishing imaginary part By analogy to the high-temperature 
regime [281 and from the results in [17,181 one might expect that Cr(x) is oscillating. 
Indeed, the correlation functions in the superintegrable case 6 = (n = n/2 can be nicely 
fitted bj 

For E 

C,, ( x )  = aS,,o + be-’Ieo 
c r ( x )  = m2 + p e 4 l I k t k i l L ) x  

(5.7a) 

(5.7b) 

i, 4, $1 good fits to (5 .5)  and (5.6) using (5.7) are given by the values in table 1. 

Table 1. P x m e t e n  for the correl~tion functions (5 7) at q5 = (o = ~12. 

5. e- (1 b Bi~l I l l 2  L Sin(ZZ/Li p 
~ ~~ ~ ~ ~ ~ ~ ~.. - . ~~~ . ._ .~ _ _  

3o i. i-8 , *_ , 
- 
0.25 0.26(1) 0.89(1) O. lO(1)  0.24(3) 0.9857605 0.z6iij ~~ 0.01 l(3) 
0.50 0.41(3) O.E(l) O . I l ( 1 )  O.j7(5) 0.9381 30f 15 0.27(1) 0.05(1) 
0.75 0.59(91 0.75(2) 0.14121 0.<0(7) 0.832 30-t 13 0.27(11 O.IS(21 . .  . .  . .  . .  . .  . .  
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for all values of x 
within the numerical accuracy. In fact, one expects this equality because the correlation 
lengths should be the inverses of some mass scale, and there is only one mass scale in our 
problem because all three charge sectors are degenerate. Furthermore, we observe that our 
data is compatible with an oscillating correlation function for the operator r, The oscillation 
length L (or wavevector) is around 30 sites in a major part of the low-temperature phase. 
In [17,18] it has been predicted that L should diverge as x crosses the phase boundary 
and approaches i, = 1 where the critical exponent is expected to equal 3 .  Our results are 
compatible with a divergent oscillation length at = 1 although due to the large errors we 
do not even see that L increases with i. 

We should mention that the linear approximation e(-2ilL)x x 1 - ix sin (2n/L) is as 
good as (5.7b). However, (5.7b) seems to be a more natural form. The fact that the relative 
error of the estimate for sin(2zIL) is much smaller than that of L just comes from the fact 
that L and sin(2zlL) are related by exponentiation. 

Note that the short correlation lengths strongly damp the correlation functions: at x = 7 
where we expect the first zero of Cr(x) it has already decreased by at least six orders 
of magnitude for x < :. Closer to i, = 1 the correlation length should increase but so 
should the oscillation length. Thus, it will be very difficult to obtain more precise results 
from approximate arguments and an exact expression for C r ( x )  is probably needed in order 
to decide whether (5.7b) really is the correct form and to determine the wavevector L 
accurately. 

Before we conclude the discussion of the correlation functions for the superintegrable 
chiral Potts model, we mention that a conjecture for the form of C r ( x )  has been formulated 
in [23]: C r ( x )  = m2 + C?(e-X/c'') where m is the order parameter. Our result (5.7) is 
compatible with this form. In [ I ]  the conjecture for the order parameter 

First, we remark that the correlation lengths satisfy &, = & =: 

has been formulated, but (5.8) has not been proven yet. The constant term in (5.5) is in 
exact agreement with (5.7) and (5.8) up to the order calculated, such that we may assume 
that at least the constant term of C r ( x )  is now known exactly. 

A few remarks on the choice of ground state (3.1) are in place because in [1,9] (5.8) 
has actually been derived considering an expectation value of the operator r,. We have 
already pointed out that the one-point functions of rr vanish identically due to charge 
conservation if one uses the charge eigenstates (3.1). However, if one uses instead non- 
charge eigenstates like 10.. . O )  for a perturbative expansion of I 6) they do not vanish. 
Indeed, using an expansion for 1 6) from 10, . .O)  we once aga$ verified equality of this 
one-point function with the order parameter m. If we redefine C r ( x )  by replacing I U )  by 
I C) and subtracting the contribution from the one-point functions, this is in fact the only 
change, i.e. e,-(x) = Cr(x )  - m2.  Cg(x) remains unchanged under this redefinition. 

For more general values of the angles 6, (o one expects the correlation functions to 
be also of the form (5.7)--of course with different values of the parameters. We can see 
from the constant term m2 of the correlation function Cr(x)  (5.3) that it will not be of the 
form (5.8) for general q5 # a / 2  # (p. In general, the coefficient of i3 for the constant 
term does not vanish and m2 does not even have an expansion in powers of i2. Among 
the powers that we have calculated for the general case only the fourth order in (5.3) has 
a non-vanishing imaginary part at x = 1. Under the assumption that (5.7b) is the general 
form we would expect the imaginary pan at x = 1 to be proportional to sin(2zlL) for very 
small temperatures A. Thus, we expect for very low temperatures h the relation L-' 4, 
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On the one hand, this explains the conjectured presence of a second length scale L in 
addition to the correlation length 6. The oscillation length L just comes from the chiral 
angle q4 and thus these two scales must be related to each other. On the other hand, the 
oscillation (should it really be present) will vanish smoothly as the parity conserving Potts 
case @ = q = 0 is approached. 

N S Han and A Honecker 

6. Conclusion 

In this paper we discussed the low-temperature phase of the Z3-chiral Potts quantum chain. 
We have perturbatively calculated the ground-state energy and the first gaps for P = 0 
at general chiral angles @, p. We explicitly observed duality to the high-temperature 
phase and independence of the charge sector Q .  This demonstrates a general duality 
property stating equality of spectra in the low- and high-temperature phase. Thus, a 
quasi-particle interpretation for the high-temperature phase of the general Z,-chiral Potts 
quantum chain [28] can be pulled over to the low-temperature phase. However, charge Q 
and boundary conditions R are interchanged by the duality transformation. In particular, 
for periodic boundary conditions one sees only energy levels above the ground state that 
correspond to composite particle states. We also gave a general argument that in the infinite- 
chain length limit all charge sectors are degenerate. 

We have further studied correlation functions for the operators U and r in the low- 
temperature phase of the Z3-chiral Potts quantum chain. The correlation function C ~ ( X )  has 
a constant term m2 indicating long-range order. Fitting (complex) exponential functions to 
the perturbation expansions of the correlation functions we estimated the carrelation length 
6 for @ = (0 = rr /Z  and found agreement with the prediction [17,18] that the correlation 
function Cr oscillates. A rough estimate for the oscillation length L has also been obtained. 
We argued that the oscillation length should satisfy L - @-’ for small temperatures, In 
particular, the oscillation vanishes for vanishing c h i d  angle $. These first results make an 
exact determination of the correlation functions desirable. 
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Appendix A. A proof of duality 

Duality has been proved in e.g. [29.30]. Still, we would like to present a slightly different 
approach in this appendix. We derive duality by comparing the representation F (2.3) to the 
following representation r that is usually considered 

r(r,)li, . . . i, . . .i,v) = jil . . . (i, + 1 mod n )  , . . i ~ )  . 

Note that i(r,) = r(uj)  and ?(U,) = r (r : )  and that the representations ? and r are unitarily 
equivalent. 
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We recall the statement of section 4 before proving it. Let f i F ) ( A ,  Rh'.6,"',a,"') be 
the Hamiltonian with suitable normalization for high-temperature expansions (e@) := 
AH@-')) and H F ' ( i ,  RI', 6:. CY:) be the Hamiltonian (1.1) with corresponding parameters. 
Furthermore, abbreviate the eigens ace of I ( $ )  to eigenvalue me" by w?' and that 
of F ( Q )  to eigenvalue me'' by %e'. Then I?t)(i, Rh', 6:'. CY,"') restricted to XQh' and 
H,!?(i, RI', e:, CY!) restricted to f ie"  have the same spectra if 

P 

CY1l - s h t  i, = 
k -  k Q" = Rhl RI' = Qhl 6; = .:' 

(this is equation (4.1)). For the proof we fix the state ICs; elt) to be the ground state (3.1) 
in Ret. Then the following states are a basis for ?@'It: 

IQ; i2.. . i N )  :=F(U;"). . .Y(U;~N)IGS; elt). 64.2) 

Note that this implies 

i ( ~ ~ ) l ~ ; i z . . . i ~ )  = m Q " l ~ ; ( i ~ +  l)...(iN+ I ) ) .  (-4.3) 

Now consider the following intertwining isomorphism I :  

ZIQ; i z . .  . i ~ )  := I(-iz)(iz - i3) . ' (iN-1 - i N ) ( i N  + R")) . 6 4 )  

Note that the map (A.4) maps the ground states in both phases onto each other. It is now 
straightforward to check using the basis (A.2) that 

~ ? ( u ~ + ~  mod N)) = r(rjrT+,)I zi(rjr;+l) = r ( u j ) f .  64.5) 

The observation that Z is a unitary map and r and i are unitarily equivalent in conjunction 
with (AS) proves duality. 
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